笔趣阁

手机浏览器扫描二维码访问

第一百五十章 克莱姆悖论-与线性代数的产生线性代数(第2页)

正如大家所想,矛盾的源头就是,9个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler试图向人们解释这样一件事情:曲线上的9个点虽然给出了9个不同的方程,但有时它们并不能唯一地解出那9个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler举了一个最简单的例子:方程组

3x?2y=5

4y=6x?10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以2再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是Euler文中给出的三元一次方程组:

2x?3y+5z=8

3x?5y+7z=9

x?y+3z=7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地,9个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到,Euler提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括Cramer在内的数学家们沿着Euler的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个Cramer正是后来提出线性代数一大基本定理——Cramer法则——的那个人。

喜欢数学心请大家收藏:()数学心

一本杂录  春过辽河滩  高冷学神之攻略手册  柯南!快看,你爸爸过来了!  包青天断案传奇故事汇  开局被渣,反手投资女帝无敌  邪灵战神  在明末奋斗  沉睡千年醒来,749局找上门  大清话事人  尘封的仙路  都市重生:我在七日世界刷神宠  剑神韩友平第一部  好运撞末日  神奇宝贝:开局十连抽,获得梦幻  开局成为峰主,打造万古不朽仙门  仙骨  造孽啊,曹贼竟是我自己  偏偏宠上你  跨越阶层的恋爱  

热门小说推荐
我和大圣是兄弟

我和大圣是兄弟

王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...

极品捉妖系统

极品捉妖系统

万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...

影后重生:厉先生撩妻成瘾

影后重生:厉先生撩妻成瘾

甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...

九龙吞珠

九龙吞珠

一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...

神农别闹

神农别闹

一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...

每日热搜小说推荐