笔趣阁

手机浏览器扫描二维码访问

第一百五十章 克莱姆悖论-与线性代数的产生线性代数(第1页)

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的Cramer悖论就是一个漂亮的例子。

在描述Cramer悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到9组不同的解,因此两条三次曲线最多有9个交点。另外,三次曲线的一般形式为

x^3+a·x^2·y+b·x·y^2+c·y^3+d·x^2+e·x·y+f·y^2+g·x+h·y+i=0

这里面一共有9个未知系数。

代入曲线上的9组不同的(x,y),我们就能得出9个方程,解出这9个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的9个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于9个点”和“9个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这9个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

Cramer和Euler是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是1744年9月30日Cramer在给Euler的信中提出来的。

在信中,Cramer摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用9个点唯一地确定下来,两条三次曲线可能产生出9个交点。

Cramer向Euler提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler心中的疑问不比Cramer的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748年,Euler发表了一篇题为Surunecontradictionapparentedansladoctrinedeslignescourbes(关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

大清话事人  开局成为峰主,打造万古不朽仙门  好运撞末日  包青天断案传奇故事汇  柯南!快看,你爸爸过来了!  剑神韩友平第一部  仙骨  尘封的仙路  高冷学神之攻略手册  偏偏宠上你  春过辽河滩  跨越阶层的恋爱  神奇宝贝:开局十连抽,获得梦幻  沉睡千年醒来,749局找上门  造孽啊,曹贼竟是我自己  一本杂录  在明末奋斗  都市重生:我在七日世界刷神宠  邪灵战神  开局被渣,反手投资女帝无敌  

热门小说推荐
我和大圣是兄弟

我和大圣是兄弟

王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...

极品捉妖系统

极品捉妖系统

万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...

影后重生:厉先生撩妻成瘾

影后重生:厉先生撩妻成瘾

甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...

九龙吞珠

九龙吞珠

一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...

神农别闹

神农别闹

一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...

每日热搜小说推荐