笔趣阁

手机浏览器扫描二维码访问

第三百四十五章 哈密顿发现辛几何辛几何(第2页)

这六个坐标定义了一个新的六维空间中的点。

他的六维空间是一个辛结构空间的例子,因为它可以进行面积测量。

这就是它的工作原理。

在空间中的每一点上都可以画出六个“矢量”,或者有向箭头,它们对应着行星在矢量所指向的维度上的方向或动量。

因为两个向量可以定义一个平行四边形——一个有面积的二维空间——我们可以取空间中的两个向量来测量一个面积。

但是为了确保它是一个非零的数字,你必须选择特定的一对向量:那些表示沿着同一轴的方向和动量的向量。

不匹配的向量,如z方向向量与y动量向量配对,形成面积为零的平行四边形。

这些成对向量也反映了辛空间的另一个重要性质,即它们与复数的内在联系。这些数字包括i,即?1的平方根,它们采用a+bi的形式,其中a是实部,b是虚部。

定义六维辛空间的一种方法是用三个复数,每个复数的两个部分提供两个坐标。

这两部分也对应于我们配对测量面积的两个向量。

因此,对于每个点,基于x的方向和动量向量(例如)不仅提供了测量面积的方法,而且构成了定义空间的三个复数之一。

这种关系反映在辛的名称中,辛来自希腊语单词sumplektikós,相当于基于拉丁语的“plex”,这两个词都意味着“编织在一起”——这让人联想到辛结构和复数相互交织的方式。

这也是辛空间吸引数学家想象力的主要原因之一。

辛几何研究是一种保持辛结构,保持面积测量不变的空间变换。

这允许在您可以使用的转换类型方面有一定的自由,但不是太多。

因此,辛几何占据了一种介于防水布的松散拓扑和帐篷的刚性几何之间的中间位置。

维持辛结构的转换类型被称为哈密顿异型。

但是,尽管汉密尔顿发现了辛空间的第一个例子,接着数学家开始思考在与物理世界无关的几何空间中,辛现象会是什么样子。

这章没有结束,请点击下一页继续阅读!

数学家总是喜欢推广,所以我们可能会说,‘如果我们生活在八维空间而不是三维空间,经典力学会是什么样子?

从20世纪60年代开始,弗拉基米尔·阿诺德(VladimirArnold)就提出了几个有影响力的猜想,这些猜想抓住了辛空间比普通拓扑空间(比如松软的球面)更具刚性的具体方式。

其中一个被称为阿诺德猜想,它预测了哈密顿方程的异态具有数量惊人的“固定”点,这些点在变换过程中不会移动。

通过研究它们,你可以知道是什么使辛空间不同于其他的几何空间。

20世纪80年代末,一位名叫安德烈亚斯·弗洛尔(AndreasFloer)的数学家提出了一种名为弗洛尔同构的理论,这是一种强有力的框架,是数学家现在研究辛现象的主要方法。

它使用了被称为伪全纯曲线的对象,这种曲线以迂回的方式允许数学家计算不动点,并确定它们的某个最小数目是辛空间固有的。

物理学符号也是人类解释世界的工具,而不能把物理学理解为客观世界的本质!

Gromov,Arnold,Sindel,Eliashberg都是辛几何传奇,达布定理是辛几何第一个定理

结构和量化,它们互相成就!这画面太美,已延续400年

喜欢数学心请大家收藏:()数学心

邪灵战神  仙骨  好运撞末日  跨越阶层的恋爱  开局成为峰主,打造万古不朽仙门  包青天断案传奇故事汇  春过辽河滩  大清话事人  高冷学神之攻略手册  都市重生:我在七日世界刷神宠  尘封的仙路  沉睡千年醒来,749局找上门  剑神韩友平第一部  开局被渣,反手投资女帝无敌  造孽啊,曹贼竟是我自己  柯南!快看,你爸爸过来了!  神奇宝贝:开局十连抽,获得梦幻  在明末奋斗  一本杂录  偏偏宠上你  

热门小说推荐
绝色占卜师:爷,你挺住!

绝色占卜师:爷,你挺住!

听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...

乱世情歌:农门女将

乱世情歌:农门女将

一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...

特种岁月

特种岁月

男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...

魏武侯

魏武侯

本书架空,考据慎入  新书锦衣血途发布,欢迎收藏!  这里不是春秋战国,也不是东汉末年!  似曾相识的齐楚秦魏,截然不同的列国争雄!  来自现...

每日热搜小说推荐