笔趣阁

手机浏览器扫描二维码访问

第三百八十一章 拓扑学拓扑学(第2页)

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

马克笑说:“我当然知道你想说的是莫比乌斯带或者克莱因瓶,他们需要对材料进行一些翻转或者变形之后,才能组合在一起。”说到此处,马克在想长条粘贴旋转一遍时是莫比乌斯带,旋转两遍的时候那是什么?虽不是莫比乌斯带那么,但是也不是正常形状。但马克没敢说这些,因为太魔性了。先收一收搞好学问吧。

ErikZeeman:“没错,这确是拓扑特点。明白这些拓扑粘合的灵活性。还有一个,就是复杂形状的拓扑是由简单拓扑形状粘合形成。那就需要问,什么是简单的拓扑形状?也就类似堆积木的积木是什么样的?这样的东西是最简单的吗,是不是还可以更简单。这些简单的元件拓扑,也是研究对象。”

马克说:“那当然,这是必须的,拓扑元件知道怎么弄,才能知道拿什么东西去粘。而元件往往就难免的涉及数学中群的知识了。群就是研究数学对象的各种元件的,拓扑肯定也是需要群分类,群运算也需要了。”马克才想起刚刚说四则运算是不合适的。

ErikZeeman:“没错,弄清一堆元件后,我们就敢粘贴了,而粘贴的时候必须弄好顺序,先粘哪个,后粘哪个,这种先后顺序就是轨道空间。不同的轨道空间,肯定会粘出不一样的东西。”

马克说:“没错,然后我们就要开始这些工作了。”

ErikZeeman:“走到这一步,想必要让自己思想升华一下了,其实知道拓扑学的计算本质后,那是不是就跟数学中图论的东西是相似的,毕竟图的形状,里面也包含洞这些信息,唯一不同的是,图论中连接点和传输线的权重不一样。而拓扑学中这些节点和连线都是平等的。”

马克说:“所以一个个等价的拓扑形状,就成了......”

ErikZeeman:“这种等价称之为同伦。”

马克说:“这是?”

ErikZeeman:“一个形状,通过连续变化,变成另外一个形状。不破坏其中洞,或者亏格。”

马克恍然大悟道:“所以开始要构造基本的这些群,使用同论这个方法,可以让一个很简单的形状变成各种各样的样子。这些样子当然都是同一类的。之后我们去计算这种各种各样的映射了。一个简单的拓扑元件会出现各种各样同伦型。但是如何很多同伦型的变换物放在一起,也难以判断出这是否是一个简单的元件同伦变换出来的。”

ErikZeeman:“布劳威尔不动点定理可以解决这个麻烦的问题。”

马克知道布劳威尔不动点,但头一次听说要解决这个问题。

ErikZeeman:“只要是同一形状的各种不同映射,变化出千变万化的各种同伦型的拓扑形状,那他们的布劳威尔不动点一定是相同的。”

马克兴奋说:“太好了,很机智。”

“然后大战拳脚了吧。”

ErikZeeman说:“没错,在研究一些复杂平面的时候,我们可以分而治之,把平面都分成一个个简单的形状,这就是我们研究复杂问题的办法。”

“然后研究清楚了,最后粘在一起?或者说那种分离开,我们也要知道他们怎么粘的才对。”

ErikZeeman说:“我们把这些每个分开的东西的边际研究清就行,这在前面的连通性中,已经说清了。”

马克指着一棵树,上面有一个扭曲的木头,马克说:“我们研究这个扭曲的木头,里面的旋就算一个洞。我们对这个空间进行刨分。”

ErikZeeman说:“在这里刨分完后,要对每一个被分开的东西,进行编号,存在的依据就是其中心,也就是重心出。有几个重心,就代表分成了几个形状,以此方便研究。”

马克说:“然后尽量分成最基本的单元,分到不能再分处。”

ErikZeeman说:“这就是单纯逼近。”

马克说:“如何能够实现这一过程呢?主要是看什么呢?”

ErikZeeman说:“不看这个扭曲的树,打个比方,我们挖出来一个钻石原石,要把他们分成简单的四面体一类的形状,当然不是钻石那种的。我们尽可能剩下材料,不浪费任何一个区域,尽可能多的去切割。”

马克说:“听起来很困难啊。”

ErikZeeman说:“需要对原来石头的棱进行测量和分析,这就是复形的棱道群,再根据此,进行轨道空间的单纯刨分。尽量分的要合理,一步步来。当然结果就是得知轨道和对应的元件单形。”

马克说:“确实难,但极具备实用性。”

ErikZeeman说:“切割钻石是三维空间,而我们要面对的很多更加复杂的高维复形。”

马克说:“那怎么办,听起来不见得,让人望而却步啊!”

ErikZeeman说:“先对其进行分类,其中要得到轨道和单形,所以要把轨道定向工作做好。而分类的过程,要看总体的欧拉示性数,然后把割开和修补进行运算,着都用对应的运算方式。曲面需要很多符号来表示,方便区分和运算。”

这章没有结束,请点击下一页继续阅读!

马克开窍也快的说:“之后要用同调理论,使用一个有方向的轨道,结合每个拓扑的边缘加上方向,然后对不同复杂形状,分析其形状是否可以连续变换得到。本质上是拓扑变成类似图的一种计算和对比的过程。其中轨道联系单形会以一串数字来表示这种组成。这里很多就会涉及到链,和很多单形的边缘。直接把单形边缘放入轨道中,形成一个链子,这个链子就是带着方向和组合方式的长链。”

ErikZeeman说:“想想,世间万事很多都可以用同调论,同调论不仅在微分几何、复变函数、代数几何、抽象代数、代数数论、微分方程、对策论等其他许多数学分支中有着广泛的应用。而且在自然科学和其它工程技术领域的许多学科诸如:电路网络、理论物理、计算机、电子通讯、现代控制理论乃至原子核构造理论等学科都具有广泛的应用。已成为现代数学及现代技术领域中不可替代的基础工具之一,也是非数学类众多领域的本科生及研究生必修的数学基础课程。”

马克说:“是的,它可以让很多问题变得简单化。”

ErikZeeman:“同调群也需要分类研究,以示方便研究复杂形状。在此过程中免不了会有单纯映射这种简单的,也有辐式重分的相对复杂的。区分其中复杂形分类的时候......”

马克说:“也需要有布劳威尔不动点之类的不变量。”

喜欢数学心请大家收藏:()数学心

在明末奋斗  春过辽河滩  尘封的仙路  好运撞末日  一本杂录  高冷学神之攻略手册  跨越阶层的恋爱  沉睡千年醒来,749局找上门  大清话事人  柯南!快看,你爸爸过来了!  开局被渣,反手投资女帝无敌  都市重生:我在七日世界刷神宠  包青天断案传奇故事汇  开局成为峰主,打造万古不朽仙门  邪灵战神  造孽啊,曹贼竟是我自己  偏偏宠上你  剑神韩友平第一部  仙骨  神奇宝贝:开局十连抽,获得梦幻  

热门小说推荐
绝色占卜师:爷,你挺住!

绝色占卜师:爷,你挺住!

听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...

乱世情歌:农门女将

乱世情歌:农门女将

一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...

特种岁月

特种岁月

男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...

魏武侯

魏武侯

本书架空,考据慎入  新书锦衣血途发布,欢迎收藏!  这里不是春秋战国,也不是东汉末年!  似曾相识的齐楚秦魏,截然不同的列国争雄!  来自现...

每日热搜小说推荐