手机浏览器扫描二维码访问
奥古斯特·费迪南德·莫比乌斯自打跟克莱因讨论的翻转这个事情以来,自己在很多问题上都想找到各种奇思妙想的翻转。
其中一个是关于数论中因子分解的翻转,就是莫比乌斯反演。
莫比乌斯反演是数论数学中很重要的内容,可以用于解决很多组合数学的问题。
莫比乌斯研究如下函数:
F(1)=f(1)
F(2)=f(1)+f(2)
F(3)=f(1)+f(3)
F(4)=f(1)+f(2)+f(4)
F(5)=f(1)+f(5)
F(6)=f(1)+f(2)+f(3)+f(6)
F(7)=f(1)+f(7)
F(8)=f(1)+f(2)+f(4)+f(8)
反演变化过来时以下情况:
f(1)=F(1)
f(2)=F(2)-F(1)
f(3)=F(3)-F(1)
f(4)=F(4)-F(2)
f(5)=F(5)-F(1)
f(6)=F(6)-F(3)-F(2)+F(1)
f(7)=F(7)-F(1)
f(8)=F(8)-F(4)
后来的莫比乌斯函数用在黎曼猜想J(x)公式里。
μ(1)=1
μ(n)=0(如果n可以被任一素数的平方整除)
μ(n)=-1(如果n是奇数个不同素数的乘积)
μ(n)=1(如果n是偶数个不同素数的乘积)。
因此知道了J(x)就可以计算出π(x),即素数的分布函数。把这些步骤连接在一起,我们看到,从ζ(x)到J(x),再从J(x)到π(x),素数分布的秘密完全定量地蕴涵在了Riemannζ函数之中。这就是Riemann研究素数分布的基本思路。
莫比乌斯反演用在黎曼猜想上,就充分说明了在黎曼猜想上,有一个更加深刻的反演的东西,这也许是莫比乌斯和克莱因要寻找的那种反演的东西。
喜欢数学心请大家收藏:()数学心
大清话事人 造孽啊,曹贼竟是我自己 好运撞末日 跨越阶层的恋爱 春过辽河滩 剑神韩友平第一部 邪灵战神 偏偏宠上你 仙骨 柯南!快看,你爸爸过来了! 神奇宝贝:开局十连抽,获得梦幻 都市重生:我在七日世界刷神宠 沉睡千年醒来,749局找上门 高冷学神之攻略手册 包青天断案传奇故事汇 开局成为峰主,打造万古不朽仙门 开局被渣,反手投资女帝无敌 在明末奋斗 尘封的仙路 一本杂录
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...
...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
本书架空,考据慎入 新书锦衣血途发布,欢迎收藏! 这里不是春秋战国,也不是东汉末年! 似曾相识的齐楚秦魏,截然不同的列国争雄! 来自现...
...