手机浏览器扫描二维码访问
是一种用黎曼度量的微分流形。
黎曼流形就是给定了一个光滑的对称、正定的二阶张量场的光滑流形。
给了度量以后,我们就可以像初等几何学中一样,测量长度,面积,体积等量。
流形是一类特殊的连通、豪斯多夫仿紧的拓扑空间,在此空间每一点的邻近预先建立了坐标系,使得任何两个(局部)坐标系间的坐标变换都是连续的。
n维流形的概念在18世纪法国数学家拉格朗日的力学研究中已有萌芽。
19世纪中叶英国数学家凯莱(1843)、德国数学家格拉斯曼(1844,1861)、瑞士数学家施勒夫利(1852)分别论述了n维欧几里得空间理论,把它视为n个实变量的连续统。
1854年德国数学家黎曼在研究微分几何时用归纳构造法给出一般n维流形的概念:n维流形是把无限多个(n-1)维流形按照一维流形方式放在一起而形成的,从此开始流形的拓扑结构及其局部理论的研究。
法国数学家庞加莱在19世纪末把n维流形定义为一种连通的拓扑空间,其中每一点都具有和n维欧氏空间同胚的邻域(被称为庞加莱流形),从而开辟了组合拓扑学的道路。
对流形的深入研究集中在流形上的微分结构与组合结构的存在性、唯一性问题,微分结构与组合结构的关系,流形的各种意义下的分类等问题,20世纪50—60年代做出许多重要结果,近几十年来出现有限维带边流形和无限维流形概念。
流形理论在与其他拓扑理论的相互结合发展中也提出许多问题,其研究仍在继续。
流形上的黎曼度量给定后,我们可以得到一个唯一确定的对称(即无挠)联络,并且它保持黎曼度量。这个联络称为这个黎曼度量的Levi-Civita联络。
有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。欧氏空间的联络就是通常意义上的向量函数的微分。
黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。曲率处处为零的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。
德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。
喜欢数学心请大家收藏:()数学心
开局被渣,反手投资女帝无敌 柯南!快看,你爸爸过来了! 跨越阶层的恋爱 高冷学神之攻略手册 都市重生:我在七日世界刷神宠 尘封的仙路 仙骨 一本杂录 好运撞末日 包青天断案传奇故事汇 开局成为峰主,打造万古不朽仙门 偏偏宠上你 在明末奋斗 春过辽河滩 邪灵战神 神奇宝贝:开局十连抽,获得梦幻 造孽啊,曹贼竟是我自己 大清话事人 沉睡千年醒来,749局找上门 剑神韩友平第一部
听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...
...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
本书架空,考据慎入 新书锦衣血途发布,欢迎收藏! 这里不是春秋战国,也不是东汉末年! 似曾相识的齐楚秦魏,截然不同的列国争雄! 来自现...
...