笔趣阁

手机浏览器扫描二维码访问

第二百七十章 雅可比行列式矩阵(第1页)

由于知道一个平面上曲线的导数,就是对应点上的斜率。

那么在曲面中,是不是该有一个切曲面。

而在曲体里,会有切体。

如何去用数学工具去研究呢?

曲面中,只有一个x变量,出现的就是对应的直线。

而曲面中,需要一个平面的话,就需要两个直线去确定一个平面。

而曲面是在x、y两个变量中的变化,曲面方程的求导只能按照直线求导的方式来。

那先去求x的导数,还是先求y的导数?这个先后如果求的导数不同话,那就说明有一种方向不同的连续性的东西。

当然这也是以后,柯西准则,去判断曲面连续性的东西。

而这里,去对曲面甚至曲体甚至曲高维体求导,就用雅可比行列式。

雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。

事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。

若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。

这可用行列式的乘法法则和偏导数的连锁法则直接验证。

也类似于导数的连锁法则。

偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。

雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。

对雅可比矩阵的理解就是对多变量向量的求导,跟y=f(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~

雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。

可以研究这个切体的变化来推敲这个高维物体的性质。

这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。

喜欢数学心请大家收藏:()数学心

柯南!快看,你爸爸过来了!  偏偏宠上你  春过辽河滩  沉睡千年醒来,749局找上门  一本杂录  邪灵战神  跨越阶层的恋爱  大清话事人  都市重生:我在七日世界刷神宠  开局被渣,反手投资女帝无敌  开局成为峰主,打造万古不朽仙门  造孽啊,曹贼竟是我自己  神奇宝贝:开局十连抽,获得梦幻  好运撞末日  尘封的仙路  仙骨  包青天断案传奇故事汇  在明末奋斗  高冷学神之攻略手册  剑神韩友平第一部  

热门小说推荐
绝色占卜师:爷,你挺住!

绝色占卜师:爷,你挺住!

听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...

乱世情歌:农门女将

乱世情歌:农门女将

一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...

特种岁月

特种岁月

男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...

魏武侯

魏武侯

本书架空,考据慎入  新书锦衣血途发布,欢迎收藏!  这里不是春秋战国,也不是东汉末年!  似曾相识的齐楚秦魏,截然不同的列国争雄!  来自现...

每日热搜小说推荐