笔趣阁

手机浏览器扫描二维码访问

第二百三十五章 柯西-黎曼方程复变函数(第1页)

柯西的办公室,也是他工作的地方。

满屋子堆满了信件和纸张。

有论文,草稿,还有外面的人给自己的信件。

论文有自己的,有学生的,还有收集的同行的。

草稿有计算的,设计的,画图的,已经用完的和用到半中间的。

信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。

柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。

他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。

柯西开始研究关于复数坐标系中的微积分。

如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。

严格的柯西必须要弄清楚其中微积分的条件。

在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。

柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。

这也叫柯西条件。

这个方程组最初出现在达朗贝尔的着作中。

后来欧拉将此方程组和解析函数联系起来。

然后柯西采用这些方程来构建他的函数理论。

后来黎曼也证明的这个情况。

黎曼关于此函数理论的论文于1851年问世。

而脑洞大的黎曼在想,万一有f(z)=u(x,y)+iv(x,y)+jw(x,y)这样的怪东西,会有什么样的对称现象?

是对u求x次导数,等于v求y次导数,不对,不对称这个。

重来一遍。

是对u和v求x次导数等于,对w求y的导数;对v和w求x次导数等于对u求y次导数;对u和w求x次导数等于v求y次导数?和对u和v求y次导数等于,等于负的对w求x的导数;对v和w求y次导数等于负的对u求x次导数;对u和w求x次导数,等于负的v求x次导数?可以出现这样的轮换对称,那实数,i和j之间到底是什么?

这个j是后来的汉密尔顿发现的四元数这样的东西吗?

这样的对称性的这种公式可以存在并且对称吗?

那对于f(w)=u(x,y,z)+iv(x,y,z)这样个公式呢?这是个什么鬼?

黎曼一个走神,又想到了其他问题,把这个忘了。

柯西脑子里仅仅有一堆高维空间可微的样子,心里害怕,便不敢去触碰了。

喜欢数学心请大家收藏:()数学心

剑神韩友平第一部  邪灵战神  都市重生:我在七日世界刷神宠  神奇宝贝:开局十连抽,获得梦幻  跨越阶层的恋爱  在明末奋斗  大清话事人  好运撞末日  春过辽河滩  仙骨  柯南!快看,你爸爸过来了!  沉睡千年醒来,749局找上门  尘封的仙路  开局成为峰主,打造万古不朽仙门  开局被渣,反手投资女帝无敌  一本杂录  偏偏宠上你  包青天断案传奇故事汇  造孽啊,曹贼竟是我自己  高冷学神之攻略手册  

热门小说推荐
绝色占卜师:爷,你挺住!

绝色占卜师:爷,你挺住!

听说她在占卜,他捧着手眼巴巴的就过来了爱卿,你给本君算算,今晚是本君睡了国师呢?还是国师睡了本君?她哆嗦了一下,一脚就踹了过去谁都不睡!她今晚就阉了你!!重生前,她是惊才绝艳的大占卜师,重生后,她还是上知天文下知地理的一品国师,可是,她算了两世,却没算到自己这一世会犯桃花国师大人,不好了,帝君来了!卧槽!她一下子就从八卦盘里站了起来他来干什么?他不干什么!那就好那就好!她狂抹一把额头上的冷汗。小太监欲哭无泪可他说了,今晚他夜观星象,是个鸾凤和鸣...

乱世情歌:农门女将

乱世情歌:农门女将

一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...

特种岁月

特种岁月

男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...

魏武侯

魏武侯

本书架空,考据慎入  新书锦衣血途发布,欢迎收藏!  这里不是春秋战国,也不是东汉末年!  似曾相识的齐楚秦魏,截然不同的列国争雄!  来自现...

每日热搜小说推荐