手机浏览器扫描二维码访问
(0,
3),c露ster
2
的质心是
(3,
0)。将给定的点代入公式,我们有:d
=
|3
-
0|
+
|0
-
3|=
|3|
+
|-3|=
3
+
3=
6。
。。
ing(包装法):优势:ing通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,ing可能无法显着改善模型性能。此外,由于基分类器的独立性,ing不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:ing通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2boos(提升法):优势:boos通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:boos对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,boos的训练过程相对较慢。使用场景:boos通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3stacking(堆叠法):优势:stacking通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,stacking具有更强大的表达能力。局限性:stacking的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,stacking通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:stacking适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。
七零大厂美人,改造反派崽暴富 武侠游戏:只有我知道剧情 京港月光 穿越明朝之我救了马皇后 我在无限游戏中永生 我在修仙游戏世界中浑水摸鱼 跌落山崖的我,习得神级功法 都市神医,开局扇醒拜金女 凛冬末日:全民避难所求生 逼我做妾?真太子为我入赘将军府 七零娇美人,甩掉知青当首富 我手握无限物资,砸出末世安全区 八零守寡小娇娇,冷面糙汉被钓疯 沙雕攻以为他虐了白月光 小马宝莉:星空之下 新来的转校生竟比校霸还野 快穿:盘古居然是我哥 穿成花瓶美人,反派老公破产了 医林萧韵 空间通末世,我带飞全家很合理吧
...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...
...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...
一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...