手机浏览器扫描二维码访问
18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(BrookTaylor),于1685年8月18日在英格兰德尔塞克斯郡的埃德蒙顿市出生。
1701年,泰勒进剑桥大学的圣约翰学院学习。
1709年后移居伦敦,获得法学学士学位。
1712年当选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。
从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。
1717年,他以泰勒定理求解了数值方程。
泰勒以微积分学中将函数展开成无穷级数的定理着称于世。
泰勒在无聊的玩GeoGebra,里面有个公式:
Y=A0+A1x+A2x^2+A3x^3+A4x^4+A5x^5+A6x^6+A7x^7+A8x^8+A9x^9
然后无聊的拨弄着滑动条来随意改变这些个A值。屏幕上函数图像不断变化着,但那线条总是歪七八扭,不听使唤。他认真了起来,扩大了A值的范围和精度,逐渐找到规律之后,他已经能够调出剑尖,牙齿,猫耳等图像。
他不断增加项数,调整参数,他发现增加的项数越多,他就越能掌控图像的变化。
他像扭铁丝似的上下弯折着曲线,无意中调出了一段波浪形的图像,看着似乎挺眼熟……
——这不是sin函数吗!
他抑制不住自己的兴奋,赶紧输入了标准的sin函数进行对比,同时继续调整多项式,使这个山寨函数尽可能地贴近正品。
他仔细端详着,单看眼前这一段,简直可以以假乱真,不过越到后面,分歧也就越明显了。
他猛然意识到:“我能够控制多项式画出任意图像!甚至把它伪装成其他函数!“
但是他很快冷静了下来,问了自己一连串的问题:所谓的任意,可以是无限制的任意吗?我能否完美地“伪装“出一个目标函数?如果不能,那又能够伪装到何种程度?摆在眼前的具体问题就是,能否“伪装“出一个完美的sin函数?
他决定一探究竟。如果存在某n次多项式等于sin(x);则其导函数也等于sin(x)的导函数;它的二阶导也等于sin(x)的二阶导;它的三阶导也等于sin(x)的三阶导;
……它的n阶导也等于sin(x)的n阶导。
可是,每求导一次,多项式就会降一阶。
求到n阶导不就变成常数了吗?
剑神韩友平第一部 沉睡千年醒来,749局找上门 仙骨 在明末奋斗 尘封的仙路 高冷学神之攻略手册 都市重生:我在七日世界刷神宠 造孽啊,曹贼竟是我自己 偏偏宠上你 开局被渣,反手投资女帝无敌 神奇宝贝:开局十连抽,获得梦幻 开局成为峰主,打造万古不朽仙门 包青天断案传奇故事汇 好运撞末日 大清话事人 邪灵战神 柯南!快看,你爸爸过来了! 跨越阶层的恋爱 春过辽河滩 一本杂录
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
万众瞩目之下,楚浩扔出一柄剑这轩辕剑你拿好,以后别在我面前装逼。这天,这地,这沧海,这宇宙,谁都无法阻止我。ps看完了?新书搜索从诡秘复苏开始不当人推荐票刷起来,让我们再次征战。...
...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
一张从始皇帝皇宫流传出的长生不老药地图,解开不死不灭之秘。一代名将,将守,从万人敌,到无人敌的重生之路!九龙吞珠读者交流群721466643)...
一个转世失败的神农弟子,想过咸鱼般的田园生活?没机会了!不靠谱的神农,会让你体验到忙碌而充实的感觉。师父别闹,就算我病死饿死从悬崖跳下去,也不种田,更不吃你赏赐的美食真香啊!本人著有完本精品农家仙田,欢迎阅读。QQ群42993787...